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Multiterminal Aharonov-Bohm �AB� rings are ideal building blocks for quantum networks �QNs� thanks to
their ability to map input states into controlled coherent superpositions of output states. We report on experi-
ments performed on three-terminal GaAs /AlxGa1−xAs AB devices and compare our results with a scattering-
matrix model including Lorentz forces and decoherence. Devices were studied as a function of external
magnetic field �B� and gate voltage at temperatures down to 350 mK. The total output current from two
terminals while applying a small bias to the third lead was found to be symmetric with respect to B with AB
oscillations showing abrupt phase jumps between 0 and � at different values of gate voltage and at low
magnetic fields, reminiscent of the phase-rigidity constraint due to Onsager-Casimir relations. Individual out-
puts show quasilinear dependence of the oscillation phase on the external electric field. We emphasize that a
simple scattering-matrix approach cannot model the observed behavior and propose an improved description
that can fully describe the observed phenomena. Furthermore, we shall show that our model can be success-
fully exploited to determine the range of experimental parameters that guarantee a minimum oscillation vis-
ibility, given the geometry and coherence length of a QN.
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I. INTRODUCTION

A quantum network �QN� can be implemented by means
of a set of nodes connected by electron waveguides that al-
low the coherent control of electron wave functions by
means of external magnetic or electric fields. One of the
simplest QNs based on coherent electrons is a three-terminal
Aharonov-Bohm �AB� ring with one input and two output
channels.1 When the linear superposition of the two output
states can be tuned by means of an external field, this device
realizes a qubit. The implementation of single-qubit logic
functions was proposed based on appropriately tailored
multiterminal rings,1,2 making these QNs promising building
blocks for quantum-computation architectures. Devices were
theoretically analyzed by means of scattering-matrix ap-
proaches in the Landauer-Büttiker framework,3,4 free-
electron like node equations,1,2,5 and displaced Gaussian
wave functions.6 The effect of Lorentz forces in three-
terminal rings was theoretically studied in Ref. 6 by solving
the time-dependent Schrödinger equation. Despite this in-
tense research activity, to the best of our knowledge, these
approaches have not yet been compared against experimental
results on real devices.

In this work we shall extend existing theories based on
scattering-matrix approaches by including the effect of deco-
herence and classical �Lorentz� forces in the description of
the system and carry out this comparison by studying the
low-temperature coherent-transport properties of three-
terminal AB rings. Our analysis shows that the inclusion of
these effects is necessary to fully understand the details of
the observed behavior. Additionally, we shall identify a set of
criteria that a device must satisfy to implement a functional
QN and provide the operational range that guarantees a cho-
sen value for oscillation visibility for a given set of device
parameters and electronic-coherence length.

Our devices were fabricated starting from a
GaAs /AlxGa1−xAs heterostructure containing a high-

mobility two-dimensional electron gas �2DEG�. We observed
AB oscillations in both output channels and in the total out-
put of the system as a function of an external perpendicular
magnetic field B. Oscillations show a nontrivial phenomenol-
ogy as a function of gate voltage Vg: they evolve in a con-
tinuous way from a phase-rigid regime,7–9 where the phase of
the oscillations as a function of B shows abrupt changes from
0 to � when an external electric field E is applied, to a linear
dependence of the oscillation phase with E.

II. EXPERIMENTAL RESULTS

Three-terminal AB rings were fabricated from a two-
dimensional electron gas confined 90 nm below the surface
of a modulation-doped GaAs /AlxGa1−xAs heterostructure.
At a temperature T=4 K the unpatterned 2DEG density
and mobility were found to be 2.1�1011 cm−2 and 1.7
�106 cm2 /V s, respectively.

The ring geometry was defined by shallow plasma etch-
ing. The same processing step realized a set of lateral gates
�labeled G1–G5� that provide control over the electron den-
sity in each ring arm. A scanning electron microscopy �SEM�
image in artificial colors of one of our devices is shown in
Fig. 1�b�. The ring external �internal� radius is 220 nm �90
nm�. Standard Ni/AuGe/Ni/Au �5 nm/180 nm/5 nm/100 nm�
n-type Ohmic contacts �not shown in the figure� were fabri-
cated to allow electrical access to the 2DEG. The AB inter-
ference pattern can be tuned by exploiting the magnetic
and/or electric AB effect10 by means of a perpendicular mag-
netic field or by changing the voltages VG1, VG2, and VG3
applied to gates G1, G2, and G3, respectively.

Measurements were performed in a 3He cryostat at 350
mK in a three-terminal configuration, where the injection
contact was biased with an ac excitation signal Vex
=30 �V at a frequency of 170 Hz and currents I2 and I3
were measured, respectively, at leads L2 and L3 by means of
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current preamplifiers and phase-sensitive lock-in techniques.
Blocking capacitors were present at the inputs of the pream-
plifiers to remove any unwanted dc component of the bias. In
the following we shall refer to the ratio gi= Ii /Vex as the
conductance of the output lead Li with i=2,3. Three nomi-
nally identical devices were investigated in detail and found
to display the same behavior. In the following we shall focus
on one of them, discussing when the differences or the simi-
larities observed in the others are relevant.

Figure 1�a� shows g2, g3, and the total output conductance
gt=g2+g3 as a function of the perpendicular magnetic field at
fixed gate voltages. AB oscillations are visible in both g2 and
g3 and in their sum with a maximum visibility of approxi-
mately 0.2 indicating coherent transport across the ring. The
period of the oscillations, calculated by Fourier transforming
the data �Fig. 1�c��, is �52.6 mT, corresponding to h /e AB
oscillations,10 where e is the electron charge and h is the
Plank constant, for a ring with an effective radius of 160 nm,
in good agreement with the sample geometry. Similar values
�155 and 170 nm� were found for the other devices studied.
The oscillating part of g2 �g3� is superimposed on a back-
ground that increases �decreases� as a function of B and its
amplitude decreases at higher �in modulus� magnetic fields.
This behavior originates from an imbalance in the branching
probability due to the Lorentz force6 and leads to a suppres-
sion of the visibility of the oscillations that may limit the
operation of a QN and should be taken into account in the
design of the device.

The total output conductance was found to be symmetric
with respect to the magnetic field as shown by the black
curve in Fig. 1�a�. The second derivative of gt with respect to
B is reported in Fig. 2 as a function of B and VG2. It does
display the same symmetry in the entire range of gate volt-

ages explored. In the region between −0.1 and 0.1 T of Fig.
2, abrupt jumps of the oscillation phase from 0 to � can be
seen at VG2�0.17 V and VG2�0.125 V, reminiscent of the
phase-rigidity phenomena observed in two-lead closed
rings.9,11 As the modulus of the magnetic field approaches
0.2 T, these phase jumps become smoother and evolve to-
ward an almost continuous shift of the phase with gate bias.
It is interesting to note that, within this continuous-evolution
range, the oscillations at B�0 present a phase-shift depen-
dence on the gate voltage that has an opposite sign with
respect to those at B�0: the oscillation maxima drift to
higher �in modulus� magnetic fields as the gate voltage is
increased. We stress that this is not due to a change in the
frequency of the oscillations in fact the distance between
neighboring maxima remains approximately constant.

A remarkably different behavior was observed in the evo-
lution of the individual outputs as a function of B and VG2,
shown in Fig. 3. In this case, the phase of the oscillations of
g2 evolves almost linearly with VG2 in the entire range of
magnetic fields and gate voltages explored. g3 shows a simi-
lar behavior but with an opposite dependence of the phase
evolution on VG2. The same behavior was observed in all the
devices studied: the total output conductance displayed a
transition from a phase-rigid regime to a linear regime at
�B��0.2 T, while the individual outputs displayed a linear
evolution pattern in all the range of magnetic fields explored.

III. THEORY AND SIMULATIONS

Here we shall propose a scattering-matrix approach that is
able to explain in detail the observations reported in the pre-
vious section and shall compare our numerical results with
the experimental data. Following Refs. 3 and 4, electronic
transport can be described in terms of transmission and re-
flection coefficients of a N�M scattering matrix S that in the

FIG. 1. �Color online� �a� AB oscillations measured at a fixed
gate voltages �VG1= . . . =VG5=0.12 V� at 350 mK. The red and
green lines represent the two output conductance, g2 and g3, while
the black line shows the total conductance g2+g3. �b� SEM image
of the ring in artificial colors. The gray area corresponds to the
130-nm-deep etching. The yellow areas represent the five gates
�G1–G5� while the central red region is the three-terminal AB ring
with one input �L1� and two output �L2 and L3� leads. The segment
in the figure represents a length of 1 �m. �c� Fourier transform of
the derivative with respect to B of the total output current shown in
panel �a�.

FIG. 2. Second-order derivative of the total conductance g2

+g3 with respect to the magnetic field plotted as a function of B and
VG2.
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most general case links M input electron amplitudes �u� with
N output ones �u��,

u� = Su .

In the case of our three-lead devices, the propagation of
an electron with a given energy is modeled by a 3�3 com-
plex matrix S, whose coefficients can be calculated given the
scattering matrices of the three identical blocks shown in
Fig. 4�a� that compose the ring. Each individual block
�Fig. 4�b�� is composed of a scattering center �black triangle
in the figure� coupled to three leads. One of the leads repre-
sents one of the three ring arms �black square� where
electron-phase evolution is driven by wave-function propa-
gation and electric and magnetic AB effects. Lorentz forces
are modeled by appropriately changing the branching prob-
ability of the scattering center as a function of magnetic field,
while decoherence effects are introduced in our scheme by
decreasing the amplitude of the coherent wave function of
the transmitted electron.

The scattering center is represented by a 3�3 scattering
matrix. Current conservation requires this matrix to be uni-
tary. We also restrict ourselves to the case of real matrix
elements, which is equivalent to assume that no phase shifts
are introduced by the scattering center. Under these assump-
tions the matrix is orthogonal �O�3�� and can be represented

as M̃= �Qz���Qx�	�Qz�
�, where the three independent pa-
rameters �, 	, and 
 represent the three Euler angles, Qi�x�
is a rotation of an angle x around the i axis, and the choice of
the sign accounts for the two possible parity configurations.

This representation reproduces the symmetric branching
described in Refs. 12 and 13 for �=3� /4 and 
=� /4. The
parameter 	 spans from 0 to � /2 and represents the coupling
parameter between input and output leads.

We assume that the effect of the Lorentz force on trans-
mission and reflection probabilities of the scattering center in
Fig. 4�b� is invariant under cyclic exchange of the leads. This
symmetry of the system restricts the number of free param-
eters from three to one. Taking 
 as the independent variable,
the other two angles can be written as

� = �/2 + 
 ,

	 = arccos�−
sin 2


2 + sin 2

	 .

By substitution, we obtain the following scattering matrix:

M = 
 a b sin 
 b cos 


b cos 
 a b sin 


b sin 
 b cos 
 a
� ,

where the coefficients a and b are given by

a� = �
sin 2


2 + sin 2

,

b� = � �1 − a2.

We select the solutions a=a+ and b=b+ because they rep-
resent the realistic condition where transmitted electrons do
not gain an extra � phase. As can be easily seen by examin-
ing M, the special cases 
=0 and 
=� /2 describe the situ-
ation where an incoming electron is totally transmitted to one
of the outputs or the other. Intermediate cases fall in the
range 0�
�� /2, with the symmetric branching condition
at zero magnetic field being obtained for 
=� /4.

As a first-order approximation, we assume a linear depen-
dence of the parameter 
 on the magnetic field


 =
�

4
�1 +

B

BM
	 .

This assumption restricts the allowed values of the magnetic
field within the range −BM �B�BM, where BM represents
the magnetic field at which incoming electrons are fully de-
flected into only one of the two outputs.

Electron-phase evolution in the ring arms, including elec-
tric and magnetic AB phases and decoherence effects, is
schematized by the black boxes of Fig. 4 and is introduced in
our model by means of 2�2 scattering matrices,

FIG. 3. Contour plots of the second-order derivatives of g2+g3

�panel �a��, g2 �panel �b��, and g3 �panel �c�� with respect to the
magnetic field as a function of B and VG2.

FIG. 4. �a� Complete scheme of the three-terminal AB ring. �b�
Representation of a building block describing the coupling between
one input or output lead and the ring.
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� 0 ei/3−i�−�

e−i/3−i�−� 0
	 ,

where =2�� /�0 ��0 is the AB quantum of flux h /e and �
is the magnetic flux through the ring� represents the contri-
bution to the electron-phase evolution due to the magnetic
AB effect; �= l /�c is the ratio between the length of one arm
of the ring �l=2�r /3� and the coherence length ��c�; and � is
the component due to electron propagation along the arm,
which amounts to kfl �kf is the Fermi wave number�, and the
electric AB effect. In our scheme � models decoherence phe-
nomena occurring in our system by decreasing the wave-
function amplitude as the electron propagates along the arm.
This allows us to empirically introduce the suppression of
the oscillation amplitude observed in presence of decoher-
ence at the output of QNs in a computationally more efficient
way compared to the conventional approach consisting in
introducing random phase shifts with a given probability dis-
tribution and averaging the output signal over it.

The scattering matrix of the nth block shown in Fig. 4�b�
�n=1, . . . ,3� composing the ring, including the scattering
center and the phase evolution due to the propagation along
the arm, is obtained by the combination of the two scattering
matrices described above,

Jn = 
 M11 M12e
−i/3−i�n−� M13

M21e
i/3−i�n−� M22e

−2i�n−2� M23e
i/3−i�n−�

M31 M32e
−i/3−i�n−� M33

� .

We introduced three different phases �n to take into account
that the electron propagation in each arm can be indepen-
dently controlled by means of the three side gates: G1, G2,
and G3. In the case where more than one one-dimensional
subband is available for transport, the contribution from each
of them can be evaluated by calculating �n with the corre-
sponding value of kf. This would reflect in the total output
current as a suppression of the AB oscillations but would not
give rise to a qualitative change in the oscillation behavior as
a function of gate voltage and magnetic field as can be easily
verified by calculating the transmission and reflection coef-
ficients by choosing different values of the parameters �n. In
the following we shall restrict our description to the case of a
single propagation mode. Since in our experiments we keep
the gates G1 and G3 at a constant value, we set �1=�3
=� /2. As argued above, a different choice would have led to
a shift in the calculated characteristics of no impact in the
comparison with the experiment. The remaining phase �2
will be used to model the effect of gate G2. The scattering
matrix S of the entire ring is calculated by combining three
of these matrices, one per ring node. The probabilities T2 and
T3 for an electron to be transmitted to the two outputs of the
system and R to be reflected backward into the input lead are
obtained by calculating the squared modules of the compo-
nents of u�, given the input condition u= �1,0 ,0�. This situ-
ation corresponds to injecting electrons in the ring only from
the input �left� terminal. We wish to emphasize that, since in
our model electrons that are scattered incoherently are re-
moved from the system, the sum of the reflection and trans-
mission probabilities does not need to be equal to 1.

The impact of decoherence and Lorentz forces on the be-
havior of a three-terminal ring is highlighted in Fig. 5, which
reports our results for a ring with a radius of 160 nm: panel
�a� shows the calculated total output probability without
these two effects and panel �b� shows the results of the cal-
culations for BM =370 mT and �c=320 nm. These values
were found by means of a best fitting procedure to the ex-
perimental data.

In Fig. 5�a� a strong phase-rigidity pattern dominates the
entire range of external magnetic and electric fields, as ex-
pected for perfectly coherent closed systems. On the other
hand, in Fig. 5�b� a region reminiscent of phase rigidity is
present only in a low-magnetic-field region ��B��BM /3�. At
higher field values the oscillation phase evolves linearly with
the absolute value of B and the oscillation amplitude is sup-
pressed due to the Lorentz force, as discussed above. It is
clear from the comparison of the two figures that accounting
for the Lorentz force and decoherence drastically changes the
behavior of the total conductance as a function of the exter-
nal magnetic and electric fields.

In order to allow the comparison of our model results to
the experimental data, we show in Fig. 6 d2T2 /dB2,
d2T3 /dB2, and their sum, calculated for the same parameters
of Fig. 5�b�, as a function of magnetic field and gate voltage.
The phase of the oscillations reported in Figs. 6�b� and 6�c�
shows a linear—but opposite in sign—dependence from the
gate voltage, as observed in our devices.

A further comparison between simulated and experimen-
tal total outputs of our ring is plotted in Fig. 7. Inspection of
this figure confirms the ability of our model to provide an
accurate description of the experimental data.

IV. RANGE OF OPERATION OF A QUANTUM NETWORK

As discussed above, Lorentz force and decoherence limit
the performance of a QN and should be taken into account
when designing such a device. Our theoretical model can be
exploited to quantify the impact of these effects on the op-
eration of a QN. Indeed, by setting the minimum acceptable

FIG. 5. Contour plots of the calculated total transmission prob-
ability as a function of magnetic-field and electric-phase shift ���.
�a� Conventional scattering-matrix approach with no Lorentz forces
and decoherence �1 /BM =0 and 1 /�c=0�. �b� Modified scattering-
matrix calculations including Lorentz force �BM =370 mT� and de-
coherence ��c=320 nm�.
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oscillation contrast for the operation of a given QN, our
model allows one to identify a region in parameter space
where the chosen requirements are met. To this end, it is
particularly convenient to fix the model variables that are
related to external fields �parametrized here by  and �2� and
use as independent dimensionless variables � and �0 / �BMS�,
where S is the ring area, that are related to the sample char-
acteristics. BM can be estimated from the effective arm width
W, by assuming that almost complete steering of the electron
in one of the two outputs occurs when rc�W, with rc

2

=h / �eB� being the cyclotron radius. This condition is equiva-
lent to B��0 /W2 and allows us to calculate BM as BM
=�0 /W2. In the case of the present sample the value of BM
yielded by the fitting procedure �370 mT� allows us to esti-
mate an effective width W�100 nm, consistent with the
value of the sample arm width �Fig. 1�b��. In the following
we shall set the minimum visibility at 15% to match the

value of the visibility observed in our devices.
In our model the fraction of electrons that loose phase

coherence is removed from the system and can be calculated
as

1 − �R + T2 + T3� .

Also the fraction of coherent electrons that are not useful for
further computations, owing to the imbalance created by
Lorentz force and decoherence, must be taken into account.
This can be evaluated by taking the ratio between the ampli-
tude of the AB oscillations and the background of the signal
transmitted from each output. We evaluate the contribution
of the two effects separately: each of them defines a subset of
the � ,�0 / �BMS� plane, shown, respectively, in Figs. 8�a� and
8�b�. The intersection of the two regions �shown in Fig. 8�c�
and calculated at different values of � /�0� corresponds to
the set of experimental parameters that leads to correct op-
eration of the QN. Figure 8 shows the operation region tak-
ing into account decoherence effects �panel �a�� and imbal-
ance �panel �b��. As can be observed from Fig. 8�c�,
requiring the operation of the QN within specifications at

FIG. 6. Contour plots of the second derivative of the calculated
transmission probabilities as a function of magnetic-field and
electric-phase shift ��2�. �a� Total transmission probability. ��b�,�c��
Individual channel transmission probabilities.

FIG. 7. Comparison between the simulated total conductance
and the second-order derivative with respect to B of the measured
g2+g3 as a function of the external magnetic and electric fields.

FIG. 8. �Color online� �a� Subset of the plane identified by �, the
ratio between the length of one arm of the ring and the coherence
length, and by the ratio �0 / �BMS�, which quantifies the impact of
the Lorentz force, where the fraction of electrons that maintain
phase coherence when traveling across the device is larger than
15%, calculated at a magnetic field corresponding to � /�0=2, and
a gate voltage corresponding to �=0. �b� Subset of the � ,�0 / �BMS�
plane, where the fraction of coherent electrons that contributes to
the network operation is larger than 15%. �c� Subset of the
� ,�0 / �BMS� plane, where the two conditions depicted in panels �a�
and �b� are satisfied at �=0 and for different values of � /�0. The
filled dot represents the values of the parameters � and �0 / �BMS�
that yielded the best fit to the experimental data.
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higher values of � /�0 results in a more stringent demand on
the sample parameters, owing to the oscillation visibility de-
creasing at increasing values of the magnetic field. This ap-
proach can be straightforwardly extended to more complex
QNs and yields the conditions for a given performance re-
quirement. We believe that it can be a useful tool for the
design of practical QNs.

V. CONCLUSIONS

Three-terminal ring devices were fabricated and studied at
cryogenic temperatures showing clear AB oscillations as a
function of external magnetic and electric fields. The oscil-
lations of the total output signal were found to exhibit an
evolution from a phase-rigid pattern to a linear dependence
of the phase on the external electric field at increasing �in
modulus� magnetic fields. The individual outputs displayed a

linear dependence of the phase on the electric field. We have
shown by means of the present scattering-matrix approach
that this peculiar behavior can be explained only by taking
into account the competition between decoherence effects
and classical �Lorentz� forces. Our approach can be success-
fully exploited to determine the range of experimental pa-
rameters that guarantee a given oscillation visibility, given
the geometry and coherence length of a QN. We emphasize
that this model can be easily applied to more complex QN
systems while still remaining computationally efficient.
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